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Information Retrieval

• IR systems by the scale

– web search

– personal information retrieval 

– domain-specific search

• Challenging blend of science and engineering

• First major concept in IR: the inverted index
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“Information retrieval (IR) is finding material (usually documents) 

of an unstructured nature (usually text) that satisfies an 

information need from within large collections (usually stored 

on computers).”

[Manning, Raghavan and Schutze (2008)]
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Doc 1 new home sales top forecasts

Doc 2 home   sales     rise   in  july

Doc 3 increase in home sales in july

Doc 4 july new home sales rise

Doc 1 New home sales top forecasts

Doc 2 HOME SALES RISE IN JULY

Doc 3 Increase in home sales in July

Doc 4 July new home sales rise

Inverted Index

1. Collect the documents to be indexed

2. Tokenize the text

3. Produce a list of normalized tokens

4. Index the documents
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Doc 1 new home sales top forecasts

Doc 2 home   sales     rise   in  july

Doc 3 increase in home sales in july

Doc 4 july new home sales rise

term doc. freq. documents

forecasts 1 1:1, 4:6

home 4 1:5, 2:1, 3:13, 4:10

in 2 2:17, 3:10-24

increase 1 3:1

july 3 2:20, 3:27, 4:1

new 2 1:1, 2:6

rise 2 2:12, 4:21

sales 4 1:10, 2:6, 3:18, 4:15

top 1 1:16
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Automatic Classification and Interpretation of Polar Datasets

Scientific Case Study
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Thwaites Glacier bed topography derived from airborne radar data. [Joughin, Smith and 

Medley (2014)]
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Automatic Classification and Interpretation of Polar Datasets

Scientific Case Study
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NSF ADC, https://arcticdata.io

NASA AMD, https://gcmd.gsfc.nasa.gov

NSIDC ADE, http://arctic-data-explorer.labs.nsidc.org

[Burgess and Mattmann (2014)]
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Automatic Classification and Interpretation of Polar Datasets

Scientific Case Study

• TREC Dynamic Domain: 

Polar Science

– Data Triage

– Web Crawl

– Data Preparation

– Dataset Characteristics

– Querying the Data

Nov 17, 2017 High Performance Computing for Information Retrieval 7

 
Figure 3. More precise extracted content using Apache Tika and Apache Nutch for the 

ACADIS Polar data repository. Our approach was able to extract 6% more of the data by 

correctly identifying many previously “unknown” MIME types in ACADIS. 

http://trec-dd.org/2015/2015.html

Dataset of 50,000+ crawled web pages, 

scientific data (HDF, NetCDF files, Grib files), 

zip files, PDFs, images and science code 

related to the polar sciences and available 

publicly from the NSF ADC, NASA AMD, and 

NSIDC ADE.

[Burgess, Mattmann, Totaro, McGibbney

and Ramirez (2014)]
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Indexing Data Flow

• Main bottlenecks

– parsing of documents

– text analysis

– merging of segments

• Detection complexity

– parser failures

– parser error

– Parser inability
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data source

raw data

text + metadata

inverted index

Extraction

Parsing

Indexing

Extracting raw files 

from data sources 

(e.g., HDF, NetCDF, 

GRIB, PDF, etc)

Parsing operations:

- mimetype detection

- language detection

- content handling

- metadata extraction

Indexing operations:

- tokenization

- stop words removal

- stemming
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Overview of the Research Problem

• Fast indexing and searching of Big Data

– inverted index construction is a burdensome 
operation

• What is the Hadoop ecosystem?

– MapReduce [Dean and Ghemawat (2010)]

– HDFS [Shafer, Rixner and Cox (2010)]

– Ecosystem projects: Hive, Spark, Ambari, Pig, 
etc.

• Why not Hadoop?

– Hadoop performance

– Data Not Distributed
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[Jiang et al. (2010)] [Lin et al. (2012)] 

[Dong et al. (2014)]
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Research Statement and Hypotheses

• How to efficiently face the indexing 

problem?

– Extract-Parse-Index in-memory pipelines

– Parallel Technologies (e.g., GPU, Pthreads)

– Enhancing de facto IR standard technologies

• ISODAC [Totaro, Bernaschi, Carbone and Cianfriglia (2016)]

1. New high performance solution for indexing

2. Only inverted indexes are written on disk

3. Scalable according to hardware resources
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Software Architecture
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HPC Cluster

Web GUI

DATABASE

CONNECTIONS’ LEGEND

DB input/ouput

HPC cluster

INDEX

REPO

SEARCHER

SearchAdmin

MEDIATOR

Worker Nodes

DBMS

COORDINATOR

Status

Manager

Job

Scheduler WORKER

AGENT
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EPI In-Memory Pipeline
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Docu - Parser

Image - Extractor

Docu - Parser

Docu - Parser

Docu - Parser

Docu - Indexer

Docu - Indexer

Docu - Indexer

Docu - Indexer

S1: EXTRACT S2: PARSE S3: INDEXING

The Sleuth Kit



j p l . n a s a . g o v

Recovery Procedure

EPI In-Memory Pipeline

• Provides resilience against both missing 

files (M) and parsing failures (rounds)

• Each global fileID can be calculated by 

using the following formula:

𝑓𝑖𝑙𝑒𝐼𝐷 = ቊ
𝑀 × 𝑁 0 + 𝑂𝑘 0 𝑟𝑜𝑢𝑛𝑑𝑠 = 0

𝑠𝑒𝑛𝑡 𝑧 + 𝑀 − 𝐶𝑘 𝑧 × 𝑁 𝑧 + 1 + 𝑂𝑘 𝑧 + 1 𝑟𝑜𝑢𝑛𝑑𝑠 > 0

𝑧 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖ȁ𝐶𝑘 𝑖 < 𝑀
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Detects local 
missing files (M)

Uploads 
pipe id (Pk) 

and list of M

Uploads pipe 
seq. (Ok) and 
counters (Ck)

Determines 
list of global 
missing files

Starts an 
additional 

job

Docu-Indexer Image-Extractor Coordinator



j p l . n a s a . g o v

Recovery Procedure

EPI In-Memory Pipeline
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• First round
i = 0

N[0] = 6

O[0] = <0,1,2,3,4,5>

C[0] = <x0,x1,x2,x3,x4,x5>

• Second round
i+1  = 1

N[1] = 4

O[1] = <0,null,1,2,null,3>

C[1] = <y0,0,y1,y2,0,y3>

Image-Extractor Docu-Parsers Docu-Indexers

0

1

2

3

4

5

null

null
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Optimizations: Text Analysis on GPU

• CUDA-based Text Analysis

– Text analysis including tokenization, filtering and stop 

words removal processes

– Exploits the computational power of GPU cards

– Extends CLucene StandardAnalyzer with CUDA 

kernels that perform text analysis
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CLucene Libraries: http://clucene.sourceforge.net/
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Optimizations: Text Analysis on GPU
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One CUDA Thread per character.

Each thread applies LowerCase Filter

-1 -1 2 -1 -1 -1 -1 7 -1 -1 10 -1 -1 -1 14 15

0 3 8 11 2 7 10 14

my

M n a m e i s B

Each CUDA Thread performs Tokenization by locating 

delimiter positions

Vector processing in order to create two vectors representing 

start and end token indexes respectively.

y o b . \0

m y n a m e i s b o b . \0

Start Indexes 

(related to input text)

name

is

bob

End Indexes 

(related to input text)

my

name

bob

One CUDA Thread per token.

Each thread applies StopWords Filter.
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Optimizations: Text Analysis on GPU
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Optimizations: Parallel Segment Merging

• A Lucene index may consist of multiple 

sub-indexes or segments

• Merging algorithms are usually based on 

priority queues
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car

courage

car

money

sound

car

group

money

courage

group

segment1 segment2 segment3 segment4

car car carmatch merge INDEX
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Optimizations: Parallel Segment Merging

• Perform in parallel multi-thread heapify

and merging of extracted data

– Based on Parallel P.P.Q. [Deo and Prasad (1992)]

– Pthreads-based implementation [IEEE Std 1003.1c-

1995]
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Evaluation: ISODAC performance
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ISODAC vs. Spark Indexing
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Fault Recovery

• Simulation of two kinds of failure:

– Transient: node restarts after the failure

– Permanent: node becomes permanently 

unavailable
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Stress Pattern

(16 GB dataset)

ISODAC Spark

Time (secs) Overhead Time (secs) Overhead

No Failure 239 - 917 -

Transient 387 61% 1131 45%

Permanent 415 73% 2542 177%



j p l . n a s a . g o v

Metadata

• Illustrative Example

• Metadata Building Blocks

• Metadata — A Model Perspective
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Metadata Interoperability

• Prerequisite for uniform access to media 

objects

“Metadata interoperability is a qualitative 

property of metadata information objects that 

enables systems and applications to work 

with or use these objects across system 

boundaries.” [Haslhofer and Klas (2010)]
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Metadata Heterogeneities
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Predominant heterogeneities have been originally identified by:

[Sheth, Larson (1990)] [Ouksel, Sheth (1999)] [Wache (2003)] [Visser et al. (1997)]
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Metadata Mapping

• Interoperability technique that subsumes:

– schema mapping

– instance transformation

“Given a source schema 𝑆𝑠 ∈ 𝒮 and a target 

schema 𝑆𝑡 ∈ 𝒮, each consisting of a set of schema 

elements, 𝑒𝑠 ∈ 𝑆𝑠 and 𝑒𝑡 ∈ 𝑆𝑡 respectively, a 

mapping 𝑀 ∈ ℳ is a directional relationship 

between a set of elements 𝑒𝑖
𝑠 ∈ 𝑆𝑠 and a set of 

elements 𝑒𝑗
𝑡 ∈ 𝑆𝑡 .” [Haslhofer and Klas (2010)]
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crosswalks

functions
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Mapping Relationship

𝑚 ∈ 𝑀ቐ
𝑚

𝑝 ∈ 𝑃
𝑓 ∈ 𝐹

• Mapping expressions [Spaccapietra et al. (1992)]

– Exclude: 𝐼 𝑒𝑖
𝑠 ∩ 𝐼 𝑒𝑗

𝑡 = ∅

– Equivalent: 𝐼 𝑒𝑖
𝑠 ≡ 𝐼 𝑒𝑗

𝑡

– Include: 𝐼 𝑒𝑖
𝑠 ⊆ 𝐼 𝑒𝑗

𝑡 ∨ 𝐼 𝑒𝑗
𝑡 ⊆ 𝐼 𝑒𝑖

𝑠

– Overlap: 𝐼 𝑒𝑖
𝑠 ∩ 𝐼 𝑒𝑗

𝑡 ≠ ∅ ∧ 𝐼 𝑒𝑖
𝑠 ⊈ 𝐼 𝑒𝑗

𝑡 ∧ 𝐼 𝑒𝑗
𝑡 ⊈ 𝐼 𝑒𝑖

𝑠
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Cardinality (e.g., 1:1, 1:n, n:1)

Mapping expression

Instance transformation function
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Elements of Metadata Mapping
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A Survey of Techniques for Achieving Metadata Interoperability · 29
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Fig. 7. T he main elements of a metadata mapping specificat ion

Figure 7 illust rates the main elements of a metadata mapping specificat ion. Typ-

ically, the cardinality of a single mapping element is either 1:1, 1:n, or n:1, meaning

that an element from a source schema is related with one or many elements from

the target schema and vice versa. In theory, m:n mappings would also be possi-

ble, but in pract ice they rarely occur because one can model that kind of element

correspondence using mult iple 1:n or n:1 relat ionships.

A mapping expression p defines the semant ics of a mapping element , i.e., it de-

scribes how the interpretat ions of the model elements, denoted as I (es
i ) and I (et

i ),

are related. In its simplest form, such an expression could be unknown, stat ing that

two elements are related, without giving any evidence how. A more complex exam-

ple are mapping expressions that indicate the confidence of a mapping relat ionship

according to a specified metrics, as described in [Mena et al. 2000]. One can dist in-

guish between the following types of mapping expressions (e.g., [Spaccapiet ra et al.

1992]):

—exclude (I (es
i ) \ I (et

j ) = ; ): the interpretat ions of two schema elements have

dist inct meanings. In the example presented in Sect ion 2, the interpretat ions of

the elements rights in the Dublin Core and birthday in the proprietary schema

exclude each other.

—equivalent (I (es
i ) ⌘I (et

j )): the interpretat ions of two, possibly lexically di↵erent

schema elements are equivalent . The elementsauthor in the proprietary and the

element creator in the Dublin Core schema are examples for such a relat ionship.

—include (I (es
i ) ✓ I (et

j ) _ I (et
j ) ✓ I (es

i )): the interpretat ion of one schema element

contains the interpretat ion of another element . In the context of our example, the

interpretat ion of the Dublin Core element creator includes the interpretat ions

of the TV-Anyt ime elements GivenName and FamilyName because these elements

describe a person in the role of an author.

A CM Journal Name, Vol . V , No. N , M 20Y Y .
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Other Group Projects at NASA JPL
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Six months internship at NASA JPL working for Computer 

Science for Data Intensive Applications (398M) group

(Mentor: Prof. Chris Mattmann)

Celgene needs a solution 

for text mining in 

biomedical domain

DARPA Memex for fight 

against and prevention of 

Human Trafficking

Apache committer and PMC member since April 2015
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